
Mechanical Veri�cation of a Generalized

Protocol for Byzantine Fault Tolerant Clock

Synchronization

Reprint from J. Vytopil, editor: Formal Techniques in Real-Time and Fault-

Tolerant Systems, Nijmegen, The Netherlands, January 1992, pages 217{236; Vol-
ume 571 of Springer Verlag Lecture Notes in Computer Science.

Natarajan Shankar�

Computer Science Laboratory

SRI International

Menlo Park, CA 94025 USA

Abstract

Schneider [Sch87] generalizes a number of protocols for Byzantine fault-
tolerant clock synchronization and presents a uniform proof for their correct-
ness. We present a mechanical veri�cation of Schneider's protocol leading to
several signi�cant clari�cations and revisions. The veri�cation was carried out
with the Ehdm system [RvHO91] developed at the SRI Computer Science Lab-
oratory. The mechanically checked proofs include the veri�cation that the ego-
centric mean function used in Lamport and Melliar-Smith's Interactive Con-
vergence Algorithm [LMS85] satis�es the requirements of Schneider's protocol.
Our mechanical veri�cation raises a number of issues regarding the veri�cation
of fault-tolerant, distributed, real-time protocols that are germane to the design
of a special-purpose logic for such problems.

�This work was supported by NASA Contract NAS1-18226. John Rushby, Friedrich von Henke,

Fred Schneider, and Rick Butler provided considerable guidance and encouragement. I also thank

Paul Miner (NASA Langley Research Center) and the referees for their comments and clari�cations.

1

1 Introduction

Synchronizing clocks in the presence of faults is a classic problem in distributed

computing. Even the most accurate clocks do drift at signi�cant rates, both with

respect to a time standard and relative to each other. In order for independent pro-

cessors to exhibit cooperative behavior, it is often required that their local clocks

be synchronized. Such synchrony is the basis for distributed algorithms that use

timeouts, time stamps, and rounds of message passing. Synchronization is also as-

sumed when the same computation is executed on multiple, independent processors

in order to mask processor failures.

Synchronizing clocks in the presence of faults is a di�cult problem. Maintaining

synchrony by periodically broadcasting a global clock has the drawback of creating

a single point of failure. The basic way to achieve fault-tolerant synchronization is

for each processor to periodically execute a protocol that involves exchanging clock

values with the other processors, computing a consensus reading from these values,

and appropriately adjusting its local clock to re
ect the consensus. The di�culty is

that processors can fail in arbitrary, unpredictable ways and can upset the consen-

sus by communicating one clock value to one processor and a di�erent clock value

to another. An algorithm that can cope with such failures is said to be Byzan-

tine fault-tolerant [LSP82]. There are a number of known algorithms for Byzantine

fault-tolerant clock synchronization. These algorithms themselves are fairly simple

to describe, but the reasoning required to establish their correctness is extremely

delicate. The di�culty stems from having to simultaneously deal with relative and

absolute clock drifts, processor failures, reading errors, and the complicated arith-

metic that is involved. Correctly modelling the behavior of clocks can itself be a

di�cult problem under these conditions.

Schneider [Sch87] presents a clock synchronization scheme (abbreviated here as

SCS) that captures the mathematics behind a number of individual synchroniza-

tion algorithms. His scheme alleviates some of the complexity of reasoning about

these protocols. Schneider regards each processor as maintaining a local clock by

periodically adjusting its value to one computed by a convergence function applied

to the readings of all of the clocks. Schneider places certain natural conditions on

the behavior of suitable convergence functions and shows that these conditions are

su�cient for demonstrating that at any time, the readings of two nonfaulty clocks

are always within a �xed bound of each other. The convergence functions used by

individual protocols can then be shown to meet Schneider's conditions.

The generality of Schneider's formulation made it an appropriate candi-

date for mechanical veri�cation. Our veri�cation employed the Ehdm speci�ca-

tion/veri�cation environment developed at the Computer Science Laboratory of

SRI International. The veri�cation provides a rigorous formalization of the behav-

ior of clocks in the presence of Byzantine faults, and careful and tight derivations

of the conditions needed to achieve synchronization. The use of Ehdm led to the

2

clari�cation of a number of details from Schneider's original presentation. For in-

stance, Schneider employs a monotonicity condition on convergence functions that

was found to be inessential for the proof. The monotonicity condition actually fails

for several protocols (see Section 5). The mechanized proof clears up some mi-

nor inaccuracies in Schneider's derivation of several of the inequality constraints on

the various quantities. The powerful decision procedures for linear equalities and

inequalities provided by Ehdm were extremely useful for this proof.

There are some other related e�orts aimed at mechanically verifying distributed

protocols. Rushby and von Henke [RvH91] have used Ehdm to check the proofs

of Lamport and Melliar-Smith's interactive convergence clock synchronization algo-

rithm (ICA) [LMS85]. This veri�cation followed the original presentation of ICA

in modelling local clocks as mapping clock time to real time. Our veri�cation for-

malizes clocks as mapping real time to clock time. We compare these approaches in

Section 6. Rushby [Rus91] uses Ehdm to model and verify fault masking and recov-

ery in a synchronous N-plex system for fault-tolerance. Bevier and Young [BY90]

have used the Boyer-Moore theorem prover to verify the Oral Messages algorithm

for Byzantine agreement [LSP82] assuming that the processors are already synchro-

nized.

Schneider's results appear in a technical report and have not had the bene�t

of widespread scrutiny so it is not surprising that errors were discovered during

veri�cation. On the other hand, the interactive convergence algorithm appears in

a widely read journal paper [LMS85] and the veri�cation attempt by Rushby and

von Henke [RvH91] discovered
aws in the proof that had, till then, safely survived

the social process.

The above machine-assisted proofs of distributed protocols were formalized in

general-purpose logics. Ehdm, for example, uses a simply typed higher-order logic.

Despite the mechanical assistance and the relative abstractness of the SCS protocol,

our veri�cation still required a signi�cant amount of e�ort. It is an interesting

challenge to devise a logic that is more specialized to the task of describing fault-

tolerant distributed protocols and proving their correctness.

In this paper, we describe one outcome of our mechanized veri�cation, namely,

a precise description of Schneider's clock synchronization scheme. We also examine

the issues relating to the formal description and veri�cation of such protocols. In

Section 2 we discuss the problem of Byzantine fault-tolerant clock synchronization.

Section 3 is a careful outline of the SCS protocol as re�ned by the mechanized ver-

i�cation. Section 4 is a brief sketch of the proof that was mechanically checked.

Section 5 illustrates how the egocentric mean function of the ICA protocol satis�es

Schneider's conditions. Some observations on the proof are presented in Section 6.

The Appendices present the informal proof and some highlights of the mechanized

veri�cation. An expanded description of the proof is available as a technical re-

port [Sha91].

3

2 Byzantine Fault-tolerant Clock Synchronization

In any implementation of synchronized clocks, each processor has a physical clock

that is typically a crystal clock. Such a physical clock drifts away from the �xed

standard time (\real time") at a rate that can be bounded. By periodically applying

an adjustment to the reading of the physical clock, each processor also maintains

a logical, or virtual, clock. The adjustment is computed by a protocol involving

the exchange of clock readings by the various processors. The primary requirement

that any algorithm for clock synchronization must satisfy is that at any instant,

the absolute di�erence, or the skew , between two virtual clock readings should be

within some �xed, acceptable bound.

Processor failure adds a signi�cant dimension of complexity to the problem of

clock synchronization. As an illustration of the di�culty of synchronizing clocks

in the presence of Byzantine failures, consider the case of three clocks a, b, and c,

where only c is faulty, and nonfaulty clocks can gain or lose up to one minute during

an hour. This means that two nonfaulty clocks could drift apart by two minutes

over an hour since one clock can gain a minute while the other loses a minute.

Suppose that the goal is to keep the nonfaulty clocks synchronized to within three

minutes, where clock a gains a minute each hour and b loses a minute each hour.

The clocks start synchronized at 12 noon. At 1pm, clock a reads 1:01pm, clock

b reads 12:59pm, and clock c has failed. The clocks exchange their readings, and

c maliciously communicates its reading as 1:03pm to a and as 12:57pm to b. At

this point, a natural way for a clock to resynchronize would be to reset itself to

the average of the acceptable clock readings, namely those readings that are within

three minutes of its own reading. Then a resets itself to 1:01pm and b resets itself

to 12:59pm, so that they remain two minutes apart. Continuing thus, at 2pm,

clock a reads 2:02pm whereas clock b reads 1:58pm. The clocks a and b are now

four minutes apart, thereby exceeding the acceptable bound on the skew between

nonfaulty clocks.

The above scenario illustrates one of the early clock synchronization protocols

capable of tolerating Byzantine processor failures: the Interactive Convergence Algo-

rithm (ICA) of Lamport and Melliar-Smith [LMS85]. ICA tolerates up to F failures

for N processors where 3F < N , so that in the above case, at least four clocks

are needed to tolerate a single failure. In ICA, a processor p resynchronizes for the

i'th time when its clock reads iR. Processor p then reads the di�erence between

the other clock readings and its own clock reading. By ignoring clock readings that

di�er from its own by more than a certain �xed value, a processor p computes the

egocentric mean of the remaining clock readings as the required resynchronized clock

reading. A number of functions can be used in place of egocentric mean function

in order to compute the correction. For example, the fault-tolerant mean function

takes the average of the clock readings that remain after the top F and the bottom

F readings are discarded [LL84].

4

The following section describes the formalization of the SCS protocol arising

from our veri�cation.

3 Schneider's Schema for Clock Synchronization

The SCS protocol is described below in careful detail so that it can be compared with

Schneider's original presentation [Sch87]. Section 3.1 describes how the logical clock

is computed from the physical clock using the convergence function. Section 3.2 de-

scribes Schneider's conditions on the behavior of clocks and on suitable convergence

functions. Note that we only deal with the case when the clocks are resynchronized

with an instantaneous adjustment, whereas Schneider also deals with the situation

when the adjustment is applied in a continuous manner. Since certain \clock ticks"

might be lost or repeated in an instantaneous resynchronization, no critical events

can be scheduled for these clock ticks. Another point to note is that both real time

and clock readings range over real numbers in the formalization below, but the ma-

chine veri�cation has also been carried out with natural number values for the time

parameters.

3.1 De�ning Clocks

The physical and logical clocks are presented as functions from real time (as given

by some external standard) to clock readings. This real time thus forms the frame

of reference and is often referred to simply as \time." The variable t ranges over this

real time. Values ranging over real time are written in lower case and clock times are

in upper case. Synchronization takes place in rounds . The time at which processor

p adjusts its clock following the i'th round of synchronization is represented by tip.

The starting time t0p is taken to be zero.

PCp(t) is the reading of p's physical clock at real time t, and VCp(t) is p's

virtual or logical clock reading. The virtual clock reading at time tip is computed

by applying an adjustment adjip to the physical clock reading PCp(t
i
p). In its i'th

interval of operation, i.e., when tip � t < ti+1
p , the virtual clock reading, V Cp(t)

is given by PCp(t) + adjip. The virtual clock in the interval between tip and ti+1

p is

modelled by an abstraction called the interval clock whose value at time t is ICi
p(t).

At round 0, the adjustment adj0p is taken to be 0 so that for t < t1p, the reading

V Cp(t) is just PCp(t). For i > 0, we let �i
p be an array of clock readings so that

�i
p(q) is p's reading of ICi�1

q (tip), i.e., q's (i � 1)'th interval clock reading at time

tip, since p is really estimating q's clock reading without taking into account the

adjustment adjiq. The corrected value of the clock at time tip, namely VCp(t
i
p), is

computed by a convergence function, cfn(p;�i
p).

1

1In the Ehdm formalization, the array of observed clock readings �i
p, is actually represented as

a function from clocks to readings. Since �i
p is a function, cfn is a higher-order function.

5

The above description leads to following de�nitions where i ranges over the

natural numbers and t > 0.

adji+1

p = cfn(p;�i+1

p)� PCp(t
i+1

p) (3.1)

adj0p = 0 (3.2)

ICi
p(t) = PCp(t) + adjip (3.3)

VCp(t) = ICi
p(t); for t

i
p � t < ti+1

p (3.4)

It is easy to derive the following from De�nitions (3.1), (3.3), and (3.4).

V Cp(t
i+1

p) = ICi+1

p (ti+1

p) = cfn(p;�i+1

p) (3.5)

ICi+1

p (t) = cfn(p;�i+1

p) + PCp(t)� PCp(t
i+1

p) (3.6)

In the next section, we enumerate the constraints on these quantities when p is

a nonfaulty processor. The constraints on the behavior of the convergence function

are particularly signi�cant. The main result obtained from these constraints and

the above de�nitions is a bound � on the skew between the logical clocks of two

correct processors p and q.

Theorem 3.1 (bounded skew) For any two clocks p and q that are nonfaulty at

time t,

jV Cp(t)� V Cq(t)j � � (3:7)

The proof of Theorem 3.1 is outlined in Section 4.

3.2 Clock conditions

In formalizing the laws constraining the behavior of individual clocks, we must

ensure that no assumptions are made regarding the faulty clocks since we are dealing

with Byzantine failures. These laws which are conditions on the behavior of clocks

are enumerated below. Individual protocols and clock implementations are expected

to satisfy these conditions. Note that N is the total number of processors, and F

is the maximum number of faulty clocks that the algorithm is expected to tolerate.

To start, the following condition asserts that the nonfaulty clocks are synchronized

to within the quantity �S at time 0.

Condition 1 (initial skew) For nonfaulty processors p and q

jPCp(0)� PCq(0)j � �S (3:8)

The nonfaulty physical clocks must keep good enough time so that they do not

drift away from real time by a rate greater than �.

Condition 2 (bounded drift) If clock p is nonfaulty at time s, s � t, then

(1� �)(s� t) � PCp(s)� PCp(t) � (1 + �)(s� t) (3:9)

6

A useful corollary to bounded drift is that two physical clocks p and q that are

not faulty2 at time s, for s � t, can drift further apart over the interval s � t by

2�(s� t), since both p and q can drift by �(s� t) with respect to real time, but in

opposite directions.

jPCp(s)� PCq(s)j � jPCp(t)� PCq(t)j+ 2�(s� t) (3:10)

Each protocol has some mechanism for triggering the resynchronization of the

clocks. Schneider postulates the existence of a global synchronization signal, tiG,

which occurs at a period bounded from above and below. Our description dispenses

with the notion of a global synchronization signal and bounds the period between

the local synchronization signals and the range within which these signals occur.

Condition 3 (bounded interval) For nonfaulty clock p

0 < rmin � ti+1

p � tip � rmax (3:11)

Condition 4 (bounded delay) For nonfaulty clocks p and q3

jtiq � tipj � � (3:12)

Condition 5 (initial synchronization) For nonfaulty clock p

t0p = 0 (3:13)

The following condition ensures that there is no overlap between synchronization

periods, i.e., by the time any nonfaulty processor is ready to synchronize for the

(i+1)'th time, all nonfaulty processors have already synchronized for the i'th time.

Condition 6 (nonoverlap)

� � rmin (3:14)

An important corollary of the bounded interval and bounded delay conditions is

that for any two nonfaulty clocks p and q,

0 � ti+1

p � tiq � rmax + �: (3:15)

For a nonfaulty clock p, the value �i+1

p (q) represents p's observation of q's i'th

clock reading at time ti+1
p , i.e., it is p's estimate of ICi

q(t
i+1
p). The error in this

reading is assumed to be bounded by �.

2In the mechanized veri�cation, great pains are taken to indicate the times at which the clocks

are required to be nonfaulty. The informal discussion here makes the simplifying assumption that
clocks are either faulty or nonfaulty, and often disregards the time at which clocks are asserted as

being nonfaulty.
3Rushby [private communication] observes that this condition is a somewhat stringent one since

for most protocols, it entails the assumption that the clocks are already synchronized. This is an

important observation since it implies that the demonstration that a particular protocol meets this

condition will have to be carried out by induction over the number of synchronization rounds.

7

Condition 7 (reading error) For nonfaulty clocks p and q,

jICi
q(t

i+1

p)� �i+1

p (q)j � � (3:16)

Condition 8 (bounded faults) At any time t, at most F processors are faulty.

If p is nonfaulty at time t, then it is nonfaulty at any time s prior to t.

The conditions below are mathematical constraints placed on the convergence

function, e.g., clocks, drifts, and failures, do not play any role in the statements. The

isolation of these constraints makes it possible to demonstrate that the egocentric

mean function of ICA satis�es the conditions below independent of the context of

its use. The condition of translation invariance indicates that adding x to the value

of the convergence function should be the same as adding x to each clock reading

instead.

Condition 9 (translation invariance) For any function � mapping clocks to

clock values,

cfn(p; (�n: �(n) + x)) = cfn(p; �) + x (3:17)

The next condition of precision enhancement facilitates a comparison between

values of the convergence function based on the range of values of some subset C

of the clock readings. C is to be intuitively interpreted as the subset of nonfaulty

processors. Precision enhancement captures the convergence behavior of the con-

vergence function by asserting that the \closer" two arrays of clock readings
 and �

are to each other, the closer are the results of the convergence function applied to

and �, respectively. In the statement of precision enhancement , the above intuitive

interpretation of C as the subset of nonfaulty clocks is permissible by the bounded

faults condition. The \closeness" of
 and � is formalized by asserting that all the

readings in
 and �, respectively, of clocks in C lie in an interval of width y, and

that the corresponding readings of
 and � of any clock in C are no more than x

apart. The function �(x; y) captures the closeness of the values that result from

applying the convergence function to
 and �.4

Condition 10 (precision enhancement) Given any subset C of the N clocks

with jCj � N �F , and clocks p and q in C, then for any readings
 and � satisfying

the conditions

1. for any l in C, j
(l)� �(l)j � x

2. for any l, m in C, j
(l)�
(m)j � y

3. for any l, m in C, j�(l)� �(m)j � y

4Note that the order of arguments to � are reversed from their order in Schneider's descrip-

tion [Sch87].

8

there is a bound �(x; y), such that

jcfn(p;
)� cfn(q; �)j � �(x; y) (3:18)

The �nal condition of accuracy preservation bounds the distance between the

value of cfn(p; �) and the nonfaulty readings in �.5

Condition 11 (accuracy preservation) Given any subset C of the N clocks with

jCj � N � F , and clock readings � such that for any l and m in C, the bound

j�(l)� �(m)j � x holds, there is a bound �(x) such that for any q in C

jcfn(p; �)� �(q)j � �(x) (3:19)

Schneider also proposes a condition called monotonicity that is actually not

satis�ed by several clock synchronization protocols though it is used heavily in

Schneider's proofs. Fortunately, this condition turns out to be unnecessary in the

derivation. The monotonicity condition asserts that if for each processor l, �(l) �

(l), then cfn(p; �) � cfn(p;
). The failure of the monotonicity condition for ICA is

demonstrated in Section 5.

4 The Correctness Proof

The formal arguments are extremely delicate to carry out carefully and correctly due

to the additional consideration of processor failure. The phenomenon of processor

failure is usually dealt with casually in informal presentations, but adds signi�cantly

to the complexity of the formalization as well as the proof. A brief sketch of the

proof is given below, and a few further details are provided in Appendix A.

To establish the main result, Theorem 3.1, we must show that the skew, or ab-

solute di�erence, between the readings of any two nonfaulty clocks p and q at time

t, given by jVCp(t) � VCq(t)j, is bounded by a quantity �. The �rst step (Theo-

rem 4.1) is to bound the skew at the instant when both p and q have resynchronized

their clocks for the i'th time. This time, tip;q, is max(tip; t
i
q). The skew at this in-

stant can be bounded by a quantity �S that can be computed using the conditions

of translation invariance, precision enhancement , and reading error , and the proof

is by induction on i.

Theorem 4.1 There is a bound �S such that for synchronization round i and any

two nonfaulty processors p and q

jICi
p(t

i
p;q)� ICi

q(t
i
p;q)j � �S (4:20)

5Footnote 7 in Schneider [Sch87] explains the choice of the terms precision enhancement and

accuracy preservation. `Precision' is de�ned as the closeness with which a measurement can be

reproduced, whereas `accuracy' is the proximity of the measurement to the actual value being
measured. The virtual clocks represent various measurements of real time. Precision enhancement

characterizes the closeness of these measurements to each other. Accuracy preservation can be seen

as bounding the drift rate of the virtual clock with respect to real time.

9

We can now compute the quantity � that bounds the skew in the interval

tip;q � t < ti+1

p;q . The proof of Theorem 4.2 has two cases according to whether

t < min(ti+1
p ; ti+1

q) or t � min(ti+1
p ; ti+1

q). The �rst case follows easily from bounded

drift and bounded interval , and the second case requires accuracy preservation as

well.

Theorem 4.2 For any two nonfaulty clocks p, q, and tip;q � t < ti+1

p;q ,

jVCp(t)� VCq(t)j � �: (4:21)

Note that for any t � 0, there is an i such that t < tip;q. The main theorem then

follows from the fact that Theorem 4.2 yields a skew bound � for any t such that

0 � t < tip;q. We note of the various constraints on � and �S that arise from the

proofs in Appendix A:

1. �(2�+ 2��; �S + 2�(rmax + �) + 2�) � �S

2. �S + 2�rmax � �

3. �(�S + 2�(rmax+ �) + 2�) + � + 2�� � �.

5 ICA as an instance of Schneider's scheme

To gain some intuition into the SCS protocol, we demonstrate that the egocentric

mean function from the Interactive Convergence Algorithm of Lamport and Melliar-

Smith [LMS85] satis�es Schneider's conditions of translation invariance, precision

enhancement, and accuracy preservation.

With the interactive convergence algorithm, the convergence function cfnI takes

the egocentric mean of p's estimate of the readings of the N clocks numbered from

0 to N � 1, i.e., any readings that are more than � away from p's own reading are

replaced by p's own reading. This yields the de�nition

cfnI(p; �) =

PN�1
l=0

fixp(�(l))

N
(5:22)

where

fixp(x) =

(
x if jx� �(p)j � �

�(p) otherwise.

Translation invariance follows from the observation that

fixp((�l: �(l) + t)(q)) = fixp(�(q)) + t (5:23)

and PN�1
l=0

(�(l) + t)

N
=

PN�1
l=0

(�(l))

N
+ t (5:24)

10

To demonstrate precision enhancement , we start with a set of processors C of

cardinality jCj greater than N �F . Let f be N �jCj. The hypotheses for precision

enhancement are that for any l and m in C, j
(l) � �(l)j is bounded by x, and

j
(l)�
(m)j and j�(l) � �(m)j are bounded by y. When y � �, it can be shown

that

jcfnI(p;
)� cfnI(q; �)j �
(N � f)x

N
+
2f�+ fx + fy

N
: (5:25)

The right-hand side of (5.25) is the required �(x; y) in this case.

In the typical situation when the egocentric mean is computed, the quantity x

representing the reading error is negligible, and y representing the clock skew is

bounded by �. Since the skew following synchronization should be smaller than

�, we can see that in Equation (5.25), the number of failed processors f should be

below N=3. The derivation of �(x; y) for the case when y > �, is carried out in the

mechanized proof.

To show that cfnI satis�es accuracy preservation, it is su�cient to observe that

if all the clocks in C (the C-clocks) are within x of each other, then the C-clocks can

cause the egocentric mean to be at most (N � f)x=N away from any nonfaulty clock.

The clocks outside C can cause the egocentric mean to be up to f � (x+�)=N away

from a good clock. The total thus yields

�(x) = x+
f�

N
:

The �nal step is to demonstrate the failure of the monotonicity condition for

ICA. The monotonicity condition mentioned at the end of Section 3.2 asserts that if

for each processor l, �(l) �
(l), then cfn(p; �) � cfn(p;
). Let �(p) =
(p). Observe

now that if there is some l such that �(l)+� < �(p), but with
(p) >
(l) �
(p)��,

then fixp(�(l)) > fixp(
(l)) holds. So, it is possible to have fixp(�(l)) > fixp(
(l)),

even though we have �(l) <
(l).

6 Discussion

The formal veri�cation of the proof of the SCS protocol required considerable e�ort.

Our own experience suggests that the di�culty would have been comparable using

other veri�cation systems. The following discussion highlights some of the complex-

ity of reasoning about fault-tolerant clock synchronization protocols, and examines

some issues that are relevant to managing this complexity.

Formalization itself is one source of complexity. A number of issues are simply

swept under the rug in informal descriptions. For example, informal presentations

of fault-tolerant protocols treat failure in a somewhat casual way. Clocks that fail

are regarded as always having been faulty. Note that our informal presentation

above makes essentially the same simplifying assumption. The mechanized proof is

a great deal more precise. Clocks are allowed to fail at any point in time. A great

11

deal of care is taken to not build in any assumptions regarding the behavior of failed

clocks save that their clock readings are unspeci�ed functions of the standard global

time. Under the assumption that clocks can fail at any time, the precise forms of

the axioms are considerably more di�cult to formulate. For example, the axioms

rts0 and rts1 in Figure 2 are not at all the obvious formulations of the condition of

bounded interval since p is constrained to be correct at time t. The obvious form of

these axioms would assert p to be correct at ti+1

p and would thus say little about time

points other than tip and ti+1

p . We initially employed the \obvious" forms of these

axioms and quickly found them inadequate during the course of the mechanized

proof. These two axioms turned out to have some other inadequate variations as

well. Other axioms formalizing clock behavior also posed similar challenges.

Clock drifts are another obvious and inherent source of di�culty in the proof.

Virtually the entire proof consists of determining real time bounds on certain inter-

vals and using these to derive bounds on the clock drifts over these intervals. The

algebra involved in these calculations is very complex and has to be done with some

care. It is conceivable that these calculations could be further automated so that

these bounds can be computed rather than supplied by the user.

A key di�erence between our proof of the SCS protocol and the

Rushby/von Henke proof of the ICA protocol is that they follow Lamport and

Melliar-Smith in formalizing local clocks as functions from clock time to real time

whereas local clocks are formalized here as functions from real time to clock time.

As a consequence, our main theorem asserts that the skew between any two correct

clocks at the same time instant is bounded, whereas their main theorem asserts a

bound in the real time interval separating one correct clock's reading of time T from

another correct clock's reading of time T . We were unable to conclusively establish

either approach to be clearly superior. It seems likely that the best approach would

be to simultaneously employ both notions of a local clock. The internal behavior

of the each processor is governed by the local clock, and this can be mapped to its

real time behavior. The synchronization between various processors is best done in

terms of a real time frame of reference and subsequently mapped back to timing

requirements on the behavior of the individual processors.

The proofs here use a dense notion of time; the time variables range over ordered

�elds. The proof has been carried out with very minor changes with respect to a

discrete notion of time. One signi�cant point ignored by the formalization here is

that the bounded drift axiom can only be guaranteed to hold over a large enough

interval of measurement. It would be easy to incorporate such a notion into the

formalization and redo the proof. (The ability to easily redo proofs with minor

perturbations to the assumptions is one of the signi�cant bene�ts of mechanized

formal veri�cation.)

Though there are a number of variants of temporal logic [Pnu77] that capture

real-time notions [AH89,EMSS89,Koy89], none of these seem adequately sophisti-

cated for dealing with faults and local clocks with any special felicity. It appears

12

that what is required of such a logic is the ability to easily translate from local

time to global time assertions, to treat faultiness as a time-varying property, and

to reason about the cardinalities of processors satisfying certain constraints. We

are currently investigating the design of such a logic. It would also be interesting

to examine whether the model-checking approaches [CG87] to the veri�cation of

distributed protocols can be fruitfully applied here.

7 Conclusions

Rigorously proving the correctness of distributed protocols is an extremely di�cult

task, with or without mechanical assistance. Fault-tolerant clock synchronization is

an excellent example of a problem where the algorithms, though often simple, are

not at all easily veri�ed. In such cases, it is extremely important to have certain

organizing principles which capture the common features of the various protocols

with convincing generality. Schneider's schema for Byzantine clock synchronization

provides such principles.

The formalization here revises Schneider's presentation in some small ways.

Schneider's notion of a global signal to trigger resynchronization has been dropped

because such a notion is di�cult to instantiate for many protocols. Though the

quantities rmax and rmin have a di�erent meaning from Schneider's, these di�er-

ences ought not to matter in any of the bounds derived. The derivation we present

is extremely tight, given the structure of the proof. Schneider's monotonicity con-

dition is avoided the proofs here. This condition is used heavily by Schneider in his

arguments, but it actually turns out to not hold for many protocols. The statement

of accuracy preservation here is also slightly di�erent here from that of Schneider.

The initial proof using Ehdm and including the pencil-and-paper development

took about a month. The conditions on clocks and convergence functions were

fairly di�cult to formalize due to the careful treatment of failure. Many of these

statements were re�ned during the course of the proof. The proof itself has been

considerably revised and improved since the �rst e�ort. Verifying that the egocentric

mean function of ICA satis�ed the conditions of translation invariance, accuracy

preservation, and precision enhancement , took about two weeks. The complete

proof involves about 182 theorems or lemmas.

The most useful feature of Ehdm for this proof were the decision procedures

for linear integer and rational inequalities and equalities. The proof is of course

replete with long chains of inequality reasoning, and the decision procedures han-

dled those steps in a fairly mechanical manner. The higher-order features of the

language were also used to formalize the conditions of translation invariance, preci-

sion enhancement, and accuracy preservation, but such features were not essential

to this proof.

Fault-tolerant distributed protocols are su�ciently delicate to warrant careful,

formal, mechanized analysis. Such an analysis is possible with the existing tech-

13

nology for speci�cation and veri�cation. Schneider's presentation provides a valu-

able mathematical framework for the veri�cation of synchronization protocols. The

machine-checked proof of Schneider's protocol led to a precise formulation of the

protocol and a closely reasoned proof. It is inconceivable that the same degree of

logical rigor and preciseness could be achieved without computational assistance.

References

[AH89] R. Alur and T. A. Henzinger. A really temporal logic. In 30th IEEE

Symposium on Foundations of Computer Science, pages 164{169, 1989.

[BY90] W. R. Bevier and W. D. Young. Machine checked proofs of the design

and implementation of a fault-tolerant circuit. NASA Contractor Report

182099, Computational Logic, Inc., 1990.

[CG87] E. M. Clarke and O. Grumberg. Research on automatic verication of

�nite state concurrent systems. In Annual Review of Computer Science,

pages 269{290. Annual Reviews, Inc., 1987.

[EMSS89] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative

temporal reasoning. In Computer-Aided Veri�cation, 1989.

[Koy89] R. Koymans. Speci�ying message passing and time-critical systems with

temporal logic. PhD thesis, Eindhoven Univ. of Technology, 1989.

[LL84] J. Lundelius and N. A. Lynch. A new fault-tolerant algorithm for clock

synchronization. In Proc. of the Third ACM Symp. on Principles of

Distributed Computing, pages 75{88, 1984.

[LMS85] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the pres-

ence of faults. Journal of the ACM, 32(1):52{78, January 1985.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine

generals problem. ACM Transactions on Programming Languages and

Systems, 4(3):382{401, July 1982.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th Ann. IEEE

Symp. on Foundations of Computer Science, pages 46{57, 1977.

[Rus91] John Rushby. Formal speci�cation and veri�cation of a fault-masking

and transient-recovery model for digital
ight-control systems. Technical

Report SRI-CSL-91-3, Computer Science Laboratory, SRI International,

Menlo Park, CA, January 1991. Also available as NASA Contractor

Report 4384, July 1991.

14

[RvH91] John Rushby and Friedrich von Henke. Formal veri�cation of the Interac-

tive Convergence clock synchronization algorithm using Ehdm. Techni-

cal Report SRI-CSL-89-3R, Computer Science Laboratory, SRI Interna-

tional, Menlo Park, CA, February 1989 (Revised August 1991). Original

version also available as NASA Contractor Report 4239, June 1989.

[RvHO91] John Rushby, Friedrich von Henke, and Sam Owre. An introduction

to formal speci�cation and veri�cation using Ehdm. Technical Report

SRI-CSL-91-2, Computer Science Laboratory, SRI International, Menlo

Park, CA, February 1991.

[Sch87] Fred B. Schneider. Understanding protocols for Byzantine clock synchro-

nization. Technical Report 87-859, Department of Computer Science,

Cornell University, Ithaca, NY, August 1987.

[Sha91] Natarajan Shankar. Mechanical veri�cation of a schematic Byzantine

fault-tolerant clock synchronization algorithm. Technical Report SRI-

CSL-91-4, Computer Science Laboratory, SRI International, Menlo Park,

CA, January 1991. Also available as NASA Contractor Report 4386, July

1991.

15

A Details of the Correctness Proof

The details of the proof of bounded skew are completed below by providing the

proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.1. The proof is by induction on the round number i.

Base case: When i = 0, by (3.13) we have t0p = t0q = 0. The skew bound of �S
follows from De�nitions (3.3) and (3.1), and the initial skew condition.

Induction case: The induction hypothesis asserts that for every pair of nonfaulty

processors, l and m

jICi
l(t

i
l;m)� ICi

m(t
i
l;m)j � �S (A:26)

The goal is to establish for any pair of nonfaulty processors p and q, that

jICi+1

p (ti+1

p;q)� ICi+1

q (ti+1

p;q)j � �S (A:27)

Without loss of generality, assume that ti+1

q precedes ti+1

p so that ti+1

p;q = ti+1

p .

Then Equation (3.6) and translation invariance yield

ICi+1

q (ti+1

p) = cfn(q;�i+1

q) + PCq(t
i+1

p)� PCq(t
i+1

q)

= cfn(q; (�n: �i+1

q (n) + PCq(t
i+1

p)� PCq(t
i+1

q))) (A.28)

By Equation (3.5), we have

ICi+1

p (ti+1

p) = cfn(p;�i+1

p) (A:29)

so that the required skew can be rewritten as

jcfn(q; (�n:�i+1

q (n) + PCq(t
i+1

p)� PCq(t
i+1

q)))� cfn(p;�i+1

p)j

This quantity can be bounded using precision enhancement with (�n: �i+1
q (n) +

PCq(t
i+1

p)�PCq(t
i+1

q)) for
 and �i+1

p for �. The set C in precision enhancement is

taken to be the subset of nonfaulty clocks as permitted by bounded faults . To satisfy

Hypothesis 1 of precision enhancement , we need an x such that for any nonfaulty l,

j(�i+1

q (l) + PCq(t
i+1

p)� PCq(t
i+1

q))� �i+1

p (l)j � x:

The value 2�� + 2� can be substituted for x since by bounded drift ,

j(PCq(t
i+1

p)� PCq(t
i+1

q))� (ti+1

p � ti+1

q)j � �� (A:30)

and by reading error and bounded drift , we get

j(�i+1

p (l)� �i+1

q (l))� (ti+1

p � ti+1

q)j

� 2�+ j(ICi
l(t

i+1

p)� ICi
l(t

i+1

q))� (ti+1

p � ti+1

q)j

16

� 2�+ �� (A.31)

The induction hypothesis is needed in order to satisfy Hypotheses 2 and 3 of the

relevant instance of precision enhancement . For both hypotheses, we need a y such

that for any nonfaulty processors k, l and m,

j�i+1

k (l)� �i+1

k (m)j � y (A:32)

By reading error , the induction hypothesis (A.26), and Equations (3.15) and (3.10),

we have

j�i+1

k (l)� �i+1

k (m)j

� 2�+ jICi
l(t

i+1

k)� ICi
m(t

i+1

k)j

� 2�+ jICi
l(t

i
l;m)� ICi

m(t
i
l;m)j+ 2�(ti+1

k � til;m)

� 2�+ �S + 2�(rmax+ �) (A.33)

so that the required y is �S + 2�(rmax+ �) + 2�. So by precision enhancement , if

�(2�+ 2��; �S + 2�(rmax + �) + 2�) � �S ; (A:34)

then

jICi+1

p (ti+1

p)� ICi+1

q (ti+1

p)j � �S (A:35)

thus completing the proof of Theorem 4.1.

Proof of Theorem 4.2. Assume without loss of generality that ti+1
q � ti+1

p . The

proof has two cases according to whether tip;q � t < ti+1

q or ti+1

q � t < ti+1

p .

Case 1: Assuming tip;q � t < ti+1

q . From bounded interval we get t � tip;q �

rmax. By Equation (3.4), we get V Cp(t) = ICi
p(t) and V Cq(t) = ICi

q(t). Then by

Equations (3.10), (3.3), and Theorem 4.1,

jVCp(t)� V Cq(t)j

� jVCp(t
i
p;q)� V Cq(t

i
p;q)j+ 2�rmax

� �S + 2�rmax (A.36)

The bound � should therefore be chosen so that

�S + 2�rmax � �: (A:37)

Case 2: Assuming ti+1

q < t < ti+1

p;q . In this interval, V Cq(t) = ICi+1

q (t), whereas

V Cp(t) = ICi
p(t). The strategy here is to bound the skew at ti+1

q and then compute

the additional quantity by which the clocks can drift apart in the given interval. By

17

Equations (3.5) and (3.4), we have

jVCp(t
i+1

q)� V Cq(t
i+1

q)j = jICi
p(t

i+1

q)� cfn(q;�i+1

q)j: (A:38)

By reading error and accuracy preservation, the quantity jICi
p(t

i+1
q)� cfn(q;�i+1

q)j

can by bound by �(x) + �, where for any pair of nonfaulty clocks l and m,

j�i+1

q (l)��i+1

q (m)j � x: (A:39)

As already seen in the derivation of Equation (A.32), that (A.39) holds with �S +

2�(rmax+ �) + 2� for x. We then have

jV Cp(t
i+1

q)� VCq(t
i+1

q)j � �(�S + 2�(rmax + �) + 2�) + �: (A:40)

We can now bound the skew over the interval ti+1

q � t < ti+1

p , by observing that

ti+1

p � ti+1

q � � by (3.12), and applying Equation (3.10) to derive the inequality,

jVCp(t)� VCq(t)j � �(�S + 2�(rmax + �) + 2�) + � + 2��: (A:41)

Therefore � has to be chosen to satisfy

�(�S + 2�(rmax+ �) + 2�) + � + 2�� � �: (A:42)

Both cases of the proof of Theorem 4.2 have been completed.

This concludes the informal presentation of the proof.

B The EHDM Proof Highlights

This section contains the Ehdm formalization of the conditions axiomatizing the

behavior of clocks described in Section 3 and the statements of the key theorems.

Figure 1 contains the type declarations for some of the variables and constants used

in clockassumptions. The clockassumptions module makes use of the module

arith, which contains the basic arithmetic facts, and countmod, which introduces

a counting function. Nonfaultiness is expressed by the predicate correct.

The axioms constraining the physical behavior of the clock appear in Figure 2.

Since we require � to not exceed �S , the axiom init corresponds to initial skew .

Axiom correct closed asserts that a failed processor never recovers (see bounded

faults). Axioms rate 1 and rate 2 together express the bounded drift condition.

The axioms rts0 and rts1 capture the bounded interval condition. These axioms

look strange because the variable t, needed to properly capture the correctness

condition, appears in them but not in bounded interval . Most of the obvious ways of

stating these axioms are either too restrictive or wrong. The axiom rts2 captures

bounded delay , and synctime 0 is just initial synchronization. The condition of

nonoverlap appears as an antecedent to the concluding theorem rather than as

an axiom. In the LaTEX format below, multiplication is represented by � as well

18

clockassumptions: Module

Using arith, countmod

Exporting all with countmod, arith

Theory

process: Type is nat
event: Type is nat
time: Type is number
Clocktime: Type is number
l;m; n; p; q; p1; p2; q1; q2; p3; q3: Var process
i; j; k: Var event
x; y; z; r; s; t: Var time
X;Y; Z;R; S; T : Var Clocktime

; �: Var function[process ! Clocktime]
�; �; �; rmin; rmax; �;�: number
PC?1(?2); V C?1(?2): function[process, time ! Clocktime]
t?2?1: function[process, event ! time]
�?2
?1: function[process, event ! function[process ! Clocktime]]

IC?2
?1(?3): function[process, event, time! Clocktime]

correct: function[process, time! bool]
cfn: function[process, function[process ! Clocktime]! Clocktime]
�: function[Clocktime, Clocktime! Clocktime]
�: function[Clocktime! Clocktime]

Figure 1: Declarations from module clockassumptions

as ?. These are synonymous, but the latter represents the uninterpreted form of

multiplication whereas the former is interpreted by the linear arithmetic decision

procedures of Ehdm.

The de�nitions of the virtual clock and the interval clock in terms of the physical

clock appear in Figure 3. These correspond to (3.1), (3.4), and (3.3), respectively.

The conditions on the convergence function appear in Figure 4. The axiom

Readerror corresponds to the condition reading error . The axiom correct count

corresponds to bounded faults . The remaining correspondences should be self-

evident.

The conclusion corresponding to Theorem 3.1 is the theorem agreement in Fig-

ure 5. The veri�ed version of Theorem 4.1 is given in Figure 6, and that of Theo-

rem 4.2 in Figure 7. The expression ti
(p*q)[i]

is an alternative notation for tip;q since

(p * q)[i] represents p if tip � tiq, and q otherwise.

19

init: Axiom correct(p; 0) � PCp(0) � 0 ^ PCp(0) � �

correct closed: Axiom s � t ^ correct(p; s) � correct(p; t)

rate 1: Axiom correct(p; s) ^ s � t � PCp(s) � PCp(t) � (s� t) ? (1 + �)

rate 2: Axiom correct(p; s) ^ s � t � PCp(s) � PCp(t) � (s� t) ? (1� �)

rts0: Axiom correct(p; t) ^ t � ti+1
p � t� tip � rmax

rts1: Axiom correct(p; t) ^ t � ti+1
p � t� tip � rmin

rts 0: Lemma correct(p; ti+1
p) � ti+1

p � tip � rmax

rts 1: Lemma correct(p; ti+1
p) � ti+1

p � tip � rmin

rts2: Axiom correct(p; t) ^ t � tiq + � ^ correct(q; t) � t � tip

rts 2: Axiom correct(p; tip) ^ correct(q; tiq) � tip � tiq � �

synctime 0: Axiom t0p = 0

Figure 2: Physical clock axioms

VClock defn: Axiom
correct(p; t) ^ t � tip ^ t < ti+1

p � V Cp(t) = ICi
p(t)

Adj: function[process, event ! Clocktime] =
(� p; i: (if i > 0 then cfn(p;�i

p)� PCp(t
i
p) else 0 end if))

IClock defn: Axiom correct(p; t) � ICi
p(t) = PCp(t) + Adj(p; i)

Figure 3: Clock de�nitions

20

Readerror: Axiom correct(p; ti+1
p) ^ correct(q; ti+1

p)

� j�i+1
p (q)� ICi

q(t
i+1
p)j � �

translation invariance: Axiom
X � 0 � cfn(p; (� p1 ! Clocktime:
(p1) +X)) = cfn(p;
) +X

ppred: Var function[process ! bool]
maxfaults: process
okay Readpred: function[function[process ! Clocktime], Clocktime,

function[process ! bool] ! bool] =
(�
; Y; ppred: (8 l;m: ppred(l) ^ ppred(m) � j
(l) �
(m)j � Y))

okay pairs: function[function[process ! Clocktime],
function[process ! Clocktime], Clocktime,
function[process ! bool] ! bool] =

(�
; �;X; ppred: (8 p3: ppred(p3) � j
(p3)� �(p3)j � X))
N : process

N 0: Axiom N > 0

N maxfaults: Axiom maxfaults � N

precision enhancement ax: Axiom
count(ppred; N) � N �maxfaults

^ okay Readpred(
; Y; ppred)
^ okay Readpred(�; Y; ppred)
^ okay pairs(
; �;X; ppred) ^ ppred(p) ^ ppred(q)

� jcfn(p;
)� cfn(q; �)j � �(X;Y)

correct count: Axiom count((� p: correct(p; t)); N) � N �maxfaults

accuracy preservation ax: Axiom

okay Readpred(
;X; ppred)

^ count(ppred; N) � N �maxfaults^ ppred(p) ^ ppred(q)

� jcfn(p;
)�
(q)j � �(X)

Figure 4: Conditions on Logical Clocks

agreement: Lemma � � rmin

^ � � �S ^ �(2 � �+ 2 � � ? �; �S + 2 � ((rmax + �) ? � +�)) � �S
^ �S + 2 � rmax ? � � �

^ �(�S + 2 � (rmax + �) ? �+ 2 � �) + �+ 2 � � ? � � �

^ t � 0 ^ correct(p; t) ^ correct(q; t)
� jV Cp(t)� V Cq(t)j � �

Figure 5: Main Theorem

21

okaymaxsync: function[nat, Clocktime! bool] =
(� i;X: (8 p; q:

correct(p; tip;q) ^ correct(q; tip;q)

� jICi
p(t

i
p;q)� ICi

q(t
i
p;q)j � X))

lemma 2: Lemma � � rmin

^ � � X ^ �(2 � �+ 2 � � ? �;X + 2 � ((rmax + �) ? � + �)) � X

� okaymaxsync(i;X)

Figure 6: Skew immediately following resynchronization

okayClocks: function[process, process, nat ! bool] =
(� p; q; i: (8 t:

t � 0 ^ t < ti
(p*q)[i]

^ correct(p; t) ^ correct(q; t)

� jV Cp(t) � V Cq(t)j � �))

lemma3 3: Lemma � � rmin

^ � � �S ^ �(2 � �+ 2 � � ? �; �S + 2 � ((rmax + �) ? � +�)) � �S

^ �S + 2 � rmax ? � � �

^ �(�S + 2 � (rmax + �) ? �+ 2 � �) + �+ 2 � � ? � � �

� okayClocks(p; q; i)

Figure 7: Skew up to ith resynchronization

22

